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Abstract. Let A1, . . . , Ar be finite, nonempty sets of integers, and leth1, . . . , hr be positive integers. The linear
form h1A1 + · · · + hr Ar is the set of all integers of the formb1 + · · · + br , wherebi is an integer that can be
represented as the sum ofhi elements of the setAi . In this paper, the structure of the linear formh1A1+· · ·+hr Ar

is completely determined for all sufficiently large integershi .
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1. Sums of sets of integers

Let A be a nonempty set of integers. For every positive integerh, the sumseth A is the set of
all integers that can be represented as the sum of exactlyh not necessarily distinct elements
of A. For example,

2{1, 2, 4} = {2, 3, 4, 5, 6, 8}
and

3{0, 2, 5} = {0, 2, 4, 5, 6, 7, 9, 10, 12, 15}.
We defineh A= {0} for h = 0. For any setA and integersa0 andδ, we define

a0+ A = {a0+ a : a ∈ A},
a0− A = {a0− a : a ∈ A},
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and

δ ∗ A = {δa : a ∈ A}.
Let [x, y] denote the interval of integersn such thatx ≤ n ≤ y.

A finite set A of integers is callednormalizedif it consists of 0 and a nonempty set
of relatively prime positive integers. IfA is a finite set of integers with|A| ≥ 2, we can
normalizeA as follows. Leta0 be the least element ofA, and letδ be the greatest common
divisor of the positive integers of the forma− a0 for a ∈ A. The normalized form ofA is
the set

A(N) =
{

a− a0

δ
: a ∈ A

}
.

Then

A = a0+ δ ∗ A(N)

and

h A= ha0+ δ ∗ h A(N). (1)

Note thatA is normalized if and only ifA = A(N).
Nathanson [5, 6] completely determined the structure of the sumseth A for all nonempty,

finite setsA and all sufficiently large integersh. By (1), it suffices to describe the structure
of sumsets of normalized sets.

Theorem 1 (Nathanson). Let A be a normalized finite set of integers, and let a∗ be the
greatest element of A. There exist integers c and d and sets C⊆ [0, c−2] and D⊆ [0, d−2]
such that, for h sufficiently large,

h A= C ∪ [c, ha∗ − d] ∪ (ha∗ − D
)
.

In this paper we generalize this result to linear forms in finite sets of integers. Letr ≥ 1.
If A1, . . . , Ar are nonempty sets of integers andh1, . . . , hr are positive integers, then the
sumset

h1A1+ · · · + hr Ar (2)

is the set of all integers that can be represented in the formb1+ · · · + br , wherebi ∈ hi Ai

for i = 1, . . . , r . The sumset (2) is called alinear form in the setsA1, . . . , Ar . We shall
describe explicitly the structure of linear forms in finite sets of integers for all sufficiently
large values ofh1, . . . , hr .

2. The structure of linear forms

The system of setsA1, . . . , Ar is normalized, if each Ai is a finite set of nonnegative
integers, if 0∈ Ai for i = 1, . . . , r, and if

⋃r
i=1 Ai\{0} is a nonempty set of relatively prime
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positive integers. For example, the setsA1 = {0, 6}, A2 = {0, 10}, andA3 = {0, 15} are a
normalized system, since(A1 ∪ A2 ∪ A3)\{0} = {6, 10, 15}, and(6, 10, 15) = 1.

Let A1, . . . , Ar be nonempty, finite sets of integers such that|Ai | ≥ 2 for all i . We shall
normalize this system of sets as follows. Letai,0 be the smallest element inAi . Let δ be
the greatest common divisor of the integers in the set

r⋃
i=1

{ai, j − ai,0 : ai, j ∈ Ai }.

Let

A(N)i =
{

ai, j − ai,0

δ
: ai, j ∈ Ai

}
.

The system of setsA(N)1 , . . . , A(N)r is normalized, and

Ai = ai,0+ δ ∗ A(N)i

for all i = 1, . . . , r . For any positive integersh1, . . . , hr , we have

r∑
i=1

hi Ai =
(

r∑
i=1

hi ai,0

)
+ δ ∗

r∑
i=1

hi A(N)i . (3)

By (3), it suffices to describe the structure of sums of normalized systems of finite sets of
integers.

Let A be a set of nonnegative integers that contains 0, let gcd(A) denote the greatest
common divisor of the elements ofA, and let

a∗ = max(A).

We define thereflected set

Â = a∗ − A = {a∗ − a : a ∈ A}.

Then Â is also a set of nonnegative integers that contains 0,

max(Â) = max(A) = a∗,
gcd(A) = gcd(Â),

and

ˆ̂A = A.

For any positive integerh, we have 0∈ h A, and

max(h A) = ha∗,
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and so

hÂ =
{

h∑
j=1

(a∗ − aj ) : aj ∈ A

}

= ha∗ −
{

h∑
j=1

aj : aj ∈ A

}
= ha∗ − h A

= ĥ A.

Lemma 1. Let A1, . . . , Ar be a normalized system of finite sets of integers, and let a∗i =
max(Ai ) for i = 1, . . . , r. The reflected setŝA1, . . . , Âr also form a normalized system. For
any integer x,

x ∈
r∑

i=1

hi Âi

if and only if

r∑
i=1

hi a
∗
i − x ∈

r∑
i=1

hi Ai .

Moreover, [
d,

r∑
i=1

hi a
∗
i − d′

]
⊆

r∑
i=1

hi Âi ,

if and only if [
d′,

r∑
i=1

hi a
∗
i − d

]
⊆

r∑
i=1

hi Ai .

Proof: For i = 1, . . . , r , let

di = gcd(Ai ).

If the systemA1, . . . , Ar is normalized, then

1= gcd

(
r⋃

i=1

Ai \{0}
)
= (d1, . . . ,dr ).

Since

gcd(Âi ) = gcd(Ai ) = di ,
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it follows that

gcd

(
r⋃

i=1

Âi \{0}
)
= (d1, . . . ,dr ) = 1,

and so the system̂A1, . . . , Âr is also normalized.
If

x ∈
r∑

i=1

hi Âi =
r∑

i=1

ĥi Ai =
r∑

i=1

(hi a
∗
i − hi Ai ),

then there exist integersbi ∈ hi Ai such that

x =
r∑

i=1

(hi a
∗
i − bi ),

and so

r∑
i=1

hi a
∗
i − x =

r∑
i=1

bi ∈
r∑

i=1

hi Ai .

The proof in the opposite direction is similar.
We observe that

x ∈
[

d′,
r∑

i=1

hi a
∗
i − d

]
,

if and only if

r∑
i=1

hi a
∗
i − x ∈

[
d,

r∑
i=1

hi a
∗
i − d′

]
,

and this suffices to prove the last part of the Lemma. 2

Theorem 2. Let A1, . . . , Ar be a normalized system of finite sets of integers. Let a∗
i =

max(Ai ) for i = 1, . . . , r. There exist integers c and d and finite sets

C ⊆ [0, c− 2]

and

D ⊆ [0, d − 2]

and there exist integers h∗1, . . . , h
∗
r such that, if hi ≥ h∗i for all i = 1, . . . , r, then

h1A1+ · · · + hr Ar = C ∪
[

c,
r∑

i=1

hi a
∗
i − d

]
∪
(

r∑
i=1

hi a
∗
i − D

)
.
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Proof: For i = 1, . . . , r, let

Ai =
{
ai,0,ai,1, . . .ai,ki−1

}
,

where

ki = |Ai |
and

0= ai,0 < ai,1 < · · · < ai,ki−1.

Renumbering the setsAi , we can assume that

a∗ = max{a∗i : i = 1, . . . , r } = a∗r = ar,kr−1.

For any integersc andm∗ with m∗ ≥ a∗, we have

[c, c+m∗ − 1]+ Aj = [c, c+m∗ − 1+ a∗j ] (4)

for j = 1, . . . , r .
Since

⋃r
i=1 Ai \{0} is a nonempty set of relatively prime positive integers, it follows that

for every integern there exist integersx′i, j such that

n =
r∑

i=1

ki−1∑
j=1

x′i, j ai, j .

For each pair(i, j ) 6= (r, kr − 1), we can choose an integerxi, j such that

x′i, j ≡ xi, j (mod a∗)

and

0≤ xi, j ≤ a∗ − 1.

There exist integersti, j such that

x′i, j = xi, j + ti, j a
∗.

Then

n =
r∑

i=1

ki−1∑
j=1

x′i, j ai, j

=
r∑

i=1

ki−1∑
j=1

(i, j )6=(r,kr−1)

(xi, j + ti, j a
∗)ai, j + x′r,kr−1ar,kr−1

=
r∑

i=1

ki−1∑
j=1

xi, j ai, j ,
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where

xr,kr−1 = x′r,kr−1+
r∑

i=1

ki−1∑
j=1

(i, j )6=(r,kr−1)

ti, j ai, j .

If

n ≥ (a∗ − 1)
r∑

i=1

ki−1∑
j=1

(i, j )6=(r,kr−1)

ai, j ,

then

xr,kr−1 ≥ 0.

Therefore, every sufficiently large integer is a nonnegative integer linear combination of
the elements of

⋃r
i=1 Ai . Let c be the smallest integer such that every integern ≥ c can be

represented in the form

n =
r∑

i=1

ki−1∑
j=1

xi, j (n)ai, j ,

where the coefficientsxi, j (n) are nonnegative integers. Then

c− 1 6∈
r∑

i=1

hi Ai

for all nonnegative integersh1, . . . , hr . For eachi = 1, . . . , r , we define

h(1)i = max

{
ki−1∑
j=1

xi, j (n) : n = c, c+ 1, . . . , c+ a∗ − 1

}
.

Then

[c, c+ a∗ − 1] ⊆
r∑

i=1

h(1)i Ai .

It follows that

c+ a∗ − 1≤ max

(
r∑

i=1

h(1)i Ai

)
=

r∑
i=1

h(1)i a∗i ,

and so

c′ =
r∑

i=1

h(1)i a∗i − (c+ a∗ − 1) ≥ 0.
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We shall prove that ifhi ≥ h(1)i for all i = 1, . . . , r , then the sumset
∑r

i=1 hi Ai contains
the interval of integers[

c,
r∑

i=1

(
hi − h(1)i

)
a∗i + c+ a∗ − 1

]
=
[

c,
r∑

i=1

hi a
∗
i − c′

]
.

The proof is by induction on

` =
r∑

i=1

(
hi − h(1)i

)
.

If ` = 0, thenhi = h(1)i for all i = 1, . . . , r, and the assertion is true.
Let ` ≥ 1, and assume that the statement holds for`−1. Thenh j ≥ h(1)j +1 for somej .

By the induction assumption, we have

r∑
i=1
i 6= j

hi Ai + (h j − 1)Aj ⊇

c,
r∑

i=1
i 6= j

hi a
∗
i + (h j − 1)a∗j − c′


=
[

c,
r∑

i=1

(
hi − h(1)i

)
a∗i − a∗j + c+ a∗ − 1

]
.

Applying (4) with

m∗ = a∗ +
r∑

i=1

(
hi − h(1)i

)
a∗i − a∗j ≥ a∗,

we obtain

r∑
i=1

hi Ai =

 r∑
i=1
i 6= j

hi Ai + (h j − 1)Aj

+ Aj

⊇
[

c,
r∑

i=1

(
hi − h(1)i

)
a∗i − a∗j + c+ a∗ − 1

]
+ Aj

=
[

c,
r∑

i=1

(
hi − h(1)i

)
a∗i + c+ a∗ − 1

]

=
[

c,
r∑

i=1

hi a
∗
i − c′

]
.

This completes the induction.
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If the system of setsA1, . . . , Ar is normalized, then the system of reflected setsÂ1, . . . , Âr

is also normalized. Applying the previous argument to the reflected system, we obtain
integersd, d′, h(2)1 , . . . , h

(2)
r such thatd is the largest integer with the property thatd − 1

cannot be written as a nonnegative integral linear combination of the elements of
⋃r

i=1 Âi ,
and [

d,
r∑

i=1

hi a
∗
i − d′

]
⊆

r∑
i=1

hi Âi

if hi ≥ h(2)i for i = 1, . . . , r. By Lemma 1,[
d′,

r∑
i=1

hi a
∗
i − d

]
⊆

r∑
i=1

hi Ai

and

r∑
i=1

hi a
∗
i − d + 1 6∈

r∑
i=1

hi Ai

for all nonnegative integersh1, . . . , hr .

Chooseh(3)i ≥ max{h(1)i , h
(2)
i } such that

c′ + d′ ≤
r∑

i=1

h(3)i a∗i .

If hi ≥ h(3)i , then [
c,

r∑
i=1

hi a
∗
i − d

]
⊆

r∑
i=1

hi Ai .

Since

c− 1 6∈
r∑

i=1

hi Ai

and

r∑
i=1

hi a
∗
i − d + 1 6∈

r∑
i=1

hi Ai

for all nonnegative integersh1, . . . , hr , it follows that if

hi ≥ h∗i = max
{
h(3)i , c, d

}
,
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then there exist setsC ⊆ [0, c− 2] andD ⊆ [0, d − 2] such that

r∑
i=1

hi Ai = C ∪
[

c,
r∑

i=1

hi a
∗
i − d

]
∪
(

r∑
i=1

hi a
∗
i − D

)
.

This completes the proof. 2

Theorem 3. Let A1, . . . , Ar be a normalized system of finite sets of integers, and let
a∗i = max(Ai ) for i = 1, . . . , r . Let B be a finite set of nonnegative integers with0 ∈ B
and b∗ = max(B). There exist integers c and d and finite sets

C ⊆ [0, c− 2]

and

D ⊆ [0, d− 2]

such that

B+ h1A1+ · · · + hr Ar =C ∪
[

c, b∗ +
r∑

i=1

hi a
∗
i − d

]
∪
(

b∗ +
r∑

i=1

hi a
∗
i − D

)

for all sufficiently large intergers hi .

Proof: This is a simple consequence of Theorem 2. 2

3. The cardinality of linear forms

Theorem 3 immediately implies the following estimate for the size of a sumset of integers.

Theorem 4. Let A1, . . . , Ar be a normalized system of finite sets of integers, and let B
be a nonempty, finite set of nonnegative integers. There exist positive integers a∗

1, . . . ,a
∗
r

and nonnegative integers b∗ and1 such that

|B+ h1A1+ · · · + hr Ar | =
r∑

i=1

a∗i hi + b∗ + 1−1

for all sufficiently large integers hi .

Theorem 4 shows that the cardinality of the sumsetB + h1A1 + · · · + hr Ar is a linear
polynomial in the variablesh1, . . . , hr . This is a special case of the following very general
result. LetSbe an arbitrary abelian semigroup, written additively, and letB, A1, . . . , Ar be
finite, nonempty subsets ofS. We can define the sumsetB+h1A1+· · ·+hr Ar in Sexactly
as we defined sumsets in the semigroup of integers. Extending results of Khovanskii [1, 2]
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for the caser = 1, Nathanson [7] proved that there exists a polynomialp(x1, . . . , xr ) such
that

|B+ h1A1+ · · · + hr Ar | = p(h1, . . . , hr )

for all sufficiently large integershi . For an arbitrary semigroupS, it is not known how to
compute this polynomial, nor even to determine its degree.
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